BOARD QUESTION PAPER : MARCH 2022 MATHEMATICS AND STATISTICS

Time: 3 Hrs.

Max. Marks: 80

General instructions:

The question paper is divided into FOUR sections.

- (1) Section A: Q.1 contains Eight multiple choice type of questions, each carrying Two marks. Q.2 contains Four very short answer type questions, each carrying one mark.
- (2) Section B: Q.3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- (3) Section C: Q.15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- (4) Section D: Q.27 to Q. 34 contain Eight long answer type questions, each carrying Four marks. (Attempt any Five)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.
- (8) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet, e.g. (a)....../(b)....../(c)....../(d)....., etc. No marks shall be given, if <u>ONLY</u> the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

SECTION – A

Q.1.	Selec	t and	and write the correct answer for the following multiple choice type of questions: The pagation of $\mathbf{p} \neq (q_{-} \times \mathbf{r})$ is							
	(1)	(a) (c)	$p \wedge (-q - p) \wedge (-q - q)$	→ (q - → ~r) → r)	→ I) IS	(b) (d)	$p \lor (\sim q \lor r)$ $p \to (q \land \sim r)$			(2)
	(ii)	In ΔA	ABC if $c^2 + a$	$a^2 - b^2 =$	= ac, then $\angle B = $	·				
		(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{3}$	(c)	$\frac{\pi}{2}$	(d)	$\frac{\pi}{6}$	(2)
	(iii)	Equation of line passing through the points $(0, 0, 0)$ and $(2, 1, -3)$ is								
		(a)	$\frac{x}{2} = \frac{y}{1} = \frac{z}{-3}$			(b)	$\frac{x}{2} = \frac{y}{-1} = \frac{z}{-3}$			
		(c)	$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$			(d)	$\frac{x}{3} = \frac{y}{1} = \frac{z}{2}$			(2)
	(iv)	The	value of $\hat{i} \cdot (\hat{j})$	$(\times \hat{k}) + \hat{j}$	$\hat{i} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is					
		(a)	0	(b)	-1	(c)	1	(d)	3	(2)
	(v)	If f(x	$=x^5+2x-$	3, then	$(f^{-1})'(-3) =$	_•				
		(a)	0	(b)	-3	(c)	$-\frac{1}{3}$	(d)	$\frac{1}{2}$	(2)
	(vi)	i) The maximum value of the function $f(x) = \frac{\log x}{x}$ is								
		(a)	e	(b)	$\frac{1}{e}$	(c)	e ²	(d)	$\frac{1}{e^2}$	(2)
	(vii)	If $\int_{-\frac{1}{4}}$	$\frac{\mathrm{d}x}{\mathrm{d}x^2 - 1} = \mathrm{A} \mathrm{loc}$	$\log\left(\frac{2x}{2x}\right)$	$\left(\frac{-1}{+1}\right)$ + c, then A =					
		(a)	1	(b)	$\frac{1}{2}$	(c)	$\frac{1}{3}$	(d)	$\frac{1}{4}$	(2)

	(viii) If the p.m.f of a r.v.X is							
	$P(x) = \frac{c}{x^3}$, for $x = 1, 2, 3$							
	= 0, otherwise, then $F(X) =$							
	(a) $\frac{216}{(b)}$ (b) $\frac{294}{(c)}$ (c) $\frac{297}{(d)}$ (d) $\frac{294}{(c)}$	(2)						
01	251 251 294 297	[4]						
Q.2.	(i) Find the principal value of $\operatorname{cot}^{-1}(-1)$	[4]						
	(1) Find the principal value of $\cot\left(\frac{1}{\sqrt{3}}\right)$	(1)						
	(ii) Write the separate equations of lines represented by the equation $5x^2 - 9y^2 = 0$ (iii) If $f'(x) = x^{-1}$, then find $f(x)$	(1) (1)						
	(iv) Write the degree of the differential equation $(W)^2 = 2(W) = 2 - 4 - 5 = 0$	(1)						
	$(y^{(1)}) + 3(y^{(1)}) + 3xy^{(1)} + 5y = 0$	(1)						
A 44	SECTION – B	[17]						
Q.3.	Using truth table verify that:	[10]						
	$(p \land q) \lor \neg q \equiv p \lor \neg q$	(2)						
Q.4.	Find the cofactors of the elements of the matrix $\begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$							
Q.5.	Find the principal solutions of $\cot \theta = 0$							
Q.6.	Find the value of k, if $2x + y = 0$ is one of the lines represented by $3x^2 + kxy + 2y^2 = 0$ (2)							
Q.7.	Find the cartesian equation of the plane passing through $A(1, 2, 3)$ and the direction ratios of whose normal are 3, 2, 5. (2)							
Q.8.	Find the cartesian co-ordinates of the point whose polar co-ordinates are $\left(\frac{1}{2}, \frac{\pi}{3}\right)$.	(2)						
Q.9.	Find the equation of tangent to the curve $y = 2x^3 - x^2 + 2$ at $\left(\frac{1}{2}, 2\right)$.	(2)						
Q.10.	Evaluate: $\int_{0}^{\frac{\pi}{4}} \sec^4 x dx$	(2)						
Q.11.	Solve the differential equation $y \frac{dy}{dx} + x = 0$	(2)						
Q.12.	Show that function $f(x) = \tan x$ is increasing in $\left(0, \frac{\pi}{2}\right)$.	(2)						
Q.13.	From the differential equation of all lines which makes intercept 3 on <i>x</i> -axis.	(2)						
Q.14.	If $X \sim B(n, p)$ and $E(X) = 6$ and $Var(X) = 4.2$, then find n and p.	(2)						
.	SECTION – C							
Atten	Attempt any EXTLL of the following questions. 0.15 If 2 $\tan^{-1}(\cos x) = \tan^{-1}(2\cos x)$ then find the value of x							
Q.15.	$11 2 \tan (\cos x) - \tan (2 \csc x)$, then find the value of x.	(3)						
Q.16.	If angle between the lines represented by ${}^{2}ax + \partial hx by^{2} = 0$ is equal to the angle between the lines							
	represented by $2x^2 - 5xy + 3y^2 = 0$, then show that $100(h^2 - ab) = (a + b)^2$.	(3)						

Q.17. Find the distance between the parallel lines $\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$ and $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z-1}{2}$. (3)

- **Q.18.** If A (5, 1, p), B(1, q, p) and C(1, -2, 3) are vertices of a triangle and $G\left(r, \frac{-4}{3}, \frac{1}{3}\right)$ is its centroid, then find the values of p, q, r by vector method. (3)
- **Q.19.** If $A(\bar{a})$ and $B(\bar{b})$ be any two points in the space and $R(\bar{r})$ be a point on the line segment AB dividing it internally in the ratio m : n then prove that $\bar{r} = \frac{m\bar{b} + n\bar{a}}{m+n}$. (3)
- Q.20. Find the vector equation of the plane passing through the point A(-1, 2, -5) and parallel to the vectors 4î ĵ + 3k and î + ĵ k.
 (3)

Q.21. If
$$y = e^{m \tan^{-1}x}$$
, then show that $(1+x^2)\frac{d^2y}{dx^2} + (2x-m)\frac{dy}{dx} = 0$ (3)

Q.22. Evaluate:
$$\int \frac{dx}{2 + \cos x - \sin x}$$
(3)

Q.23. Solve
$$x + y \frac{dy}{dx} = \sec(x^2 + y^2)$$
 (3)

Q.24. A wire of length 36 meters is bent to form a rectangle. Find its dimensions if the area of the rectangle is maximum.
 Q.25. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
 (3)

Q.26. If a fair coin is tossed 10 times. Find the probability of getting at most six heads. (3)

[20]

(4)

(4)

(4)

Attempt any FIVE of the following questions:

Q.27. Without using truth table prove that	
$(p \land q) \lor (\sim p \land q) \lor (p \land \sim q) \equiv p \lor q$	(4)

- Q.28. Solve the following system of equations by the method of inversion x - y + z = 4, 2x + y - 3z = 0, x + y + z = 2
- Q.29. Using vectors prove that the altitudes of a triangle are concurrent.
- Q.30. Solve the L.P.P. by graphical method,

$$\begin{array}{lll} \text{Minimize} & z = 8x + 10y\\ \text{Subject to} & 2x + y \ge 7,\\ & 2x + 3y \ge 15,\\ & y \ge 2, x \ge 0 \end{array} \tag{4}$$

Q.31. If x = f(t) and y = g(t) are differentiable functions of t so that y is differentiable function of x and $\frac{dx}{dt} \neq 0$, then prove that:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

π

Hence find
$$\frac{dy}{dx}$$
 if $x = \sin t$ and $y = \cos t$. (4)

Q.32. If u and v are differentiable function of *x*, then prove that:

$$\int uv \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx$$

Hence evaluate $\int \log x \, dx$ (4)

Q.33. Find the area of region between parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

Q.34. Show that:
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx = \frac{\pi}{8} \log 2$$
 (4)