BOARD QUESTION PAPER: MARCH 2022
 Mathematics - II

Time: 2 Hours
Max. Marks: 40
Note:
i. All questions are compulsory.
ii. Use of calculator is not allowed.
iii. The numbers to the right of the questions indicate full marks.
iv. In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
v. For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
vi. Draw proper figures for answers wherever necessary.
vii. The marks of construction should be clear. Do not erase them.
viii. Diagram is essential for writing the proof of the theorem.
Q.1. (A) For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet:
i. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and $\angle \mathrm{A}=48^{\circ}$, then $\angle \mathrm{D}=$ \qquad .
(A) 48°
(B) 83°
(C) 49°
(D) 132°
ii. $\quad \mathrm{AP}$ is a tangent at A drawn to the circle with center O from an external point $\mathrm{P} . \mathrm{OP}=12 \mathrm{~cm}$ and $\angle \mathrm{OPA}=30^{\circ}$, then the radius of a circle is \qquad .
(A) 12 cm
(B) $6 \sqrt{3} \mathrm{~cm}$
(C) 6 cm
(D) $12 \sqrt{3} \mathrm{~cm}$
iii. Seg $A B$ is parallel to X-axis and co-ordinates of the point A are (1,3), then the co-ordinates of the point B can be \qquad .
(A) $(-3,1)$
(B) $(5,1)$
(C) $(3,0)$
(D) $(-5,3)$
iv. The value of $2 \tan 45^{\circ}-2 \sin 30^{\circ}$ is \qquad .
(A) 2
(B) 1
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$
(B) Solve the following sub-questions:
i. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{BAC}=\angle \mathrm{BCA}=45^{\circ}$.

If $\mathrm{AC}=9 \sqrt{2}$, then find the value of AB .

ii. Chord $A B$ and chord $C D$ of a circle with centre O are congruent. If $m(\operatorname{arc} A B)=120^{\circ}$, then find the $m(\operatorname{arc} C D)$.
iii. Find the Y-co-ordinate of the centroid of a triangle whose vertices are $(4,-3),(7,5)$ and $(-2,1)$.
iv. If $\sin \theta=\cos \theta$, then what will be the measure of angle θ ?
Q.2. (A) Complete the following activities and rewrite it (any two):
i. In the above figure, seg AC and seg BD intersect each other in point P. If $\frac{A P}{C P}=\frac{B P}{D P}$, then complete the following activity to prove $\triangle \mathrm{ABP} \sim \Delta \mathrm{CDP}$.
Activity: In $\triangle \mathrm{APB}$ and $\triangle \mathrm{CDP}$

$$
\begin{array}{ll}
& \frac{\mathrm{AP}}{\mathrm{CP}}=\frac{\mathrm{BP}}{\mathrm{DP}} \ldots \ldots . \square \\
\therefore & \angle \mathrm{APB} \equiv \square \ldots \ldots \text { vertically opposite angles } \\
\therefore & \square \sim \Delta \mathrm{CDP} . \ldots \ldots . \square \text { test of similarity. }
\end{array}
$$

ii. In the above figure, $\square \mathrm{ABCD}$ is a rectangle. If $\mathrm{AB}=5, \mathrm{AC}=13$, then complete the following activity to find BC.

Activity:

$\triangle \mathrm{ABC}$ is \qquad triangle.
$\therefore \quad$ By Pythagoras theorem

$$
\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}
$$

$\therefore \quad 25+\mathrm{BC}^{2}=\square \quad \therefore \quad \mathrm{BC}^{2}=\square$

$\therefore \quad \mathrm{BC}=\square$
iii. Complete the following activity to prove: $\cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$

Activity:

$$
\begin{aligned}
\text { L.H.S. }= & \cot \theta+\tan \theta \\
& =\frac{\cos \theta}{\sin \theta}+\frac{\square}{\cos \theta}=\frac{\square}{\sin \theta \times \cos \theta} \\
& =\frac{1}{\sin \theta \times \sin \theta} \ldots \ldots . . \because \square \\
= & \frac{1}{\sin \theta} \times \frac{1}{\cos \theta} \\
& =\square \times \sec \theta \\
\therefore \quad \text { L.H.S. }= & \text { R.H.S. }
\end{aligned}
$$

(B) Solve the following sub-questions (any four):
i. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}, \mathrm{AB}: \mathrm{PQ}=4: 5$ and $\mathrm{A}(\triangle \mathrm{PQR})=125 \mathrm{~cm}^{2}$, then find $\mathrm{A}(\triangle \mathrm{ABC})$.
ii.

In the above figure, $\mathrm{m}(\operatorname{arc} \mathrm{DXE})=105^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{AYC})=47^{\circ}$, then find the measure of $\angle \mathrm{DBE}$.
iii. Draw a circle of radius 3.2 cm and centre ' O '. Take any point P on it. Draw tangent to the circle through point P using the centre of the circle.
iv. If $\sin \theta=\frac{11}{61}$, then find the value of $\cos \theta$ using trigonometric identity.
v. In $\triangle \mathrm{ABC}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=40 \mathrm{~cm}, \mathrm{AC}=41 \mathrm{~cm}$. State whether $\triangle \mathrm{ABC}$ is a right-angled triangle or not? Write reason.
Q.3. (A) Complete the following activities and rewrite it (any one):
i.

In the above figure, chord PQ and chord RS intersect each other at point T . If $\angle \mathrm{STQ}=58^{\circ}$ and $\angle \mathrm{PSR}=24^{\circ}$, then complete the following activity to verify: $\angle \mathrm{STQ}=\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{PR})+\mathrm{m}(\operatorname{arc} \mathrm{SQ})]$

Activity:

In $\triangle \mathrm{PTS}$,
$\angle \mathrm{SPQ}=\angle \mathrm{STQ}-\square \quad \because$ Exterior angle theorem
$\therefore \quad \angle \mathrm{SPQ}=34^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{QS})=2 \times \square^{\circ}=68^{\circ}$ \qquad $\because \square$

Similarly $\mathrm{m}(\operatorname{arc} \mathrm{PR})=2 \angle \mathrm{PSR}=$ \square
$\therefore \quad \frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{QS})+\mathrm{m}(\operatorname{arcPR})]=\frac{1}{2} \times \square^{\circ}=58^{\circ}$ \qquad

$$
\begin{align*}
& \text { but } \angle \mathrm{STQ}=58^{\circ} \tag{II}\\
\therefore \quad & \frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{PR})+\mathrm{m}(\operatorname{arc} \mathrm{QS})]=\angle \ldots
\end{align*}
$$

........ from (I) and (II)
ii. Complete the following activity to find the co-ordinates of point P which divides seg AB in the ratio $3: 1$ where $A(4,-3)$ and $B(8,5)$.
Activity:

$\therefore \quad$ By section formula,

$$
\begin{array}{ll}
& x=\frac{\mathrm{m} x_{2}+\mathrm{n} x_{1}}{\square}, y=\frac{\square}{\mathrm{m}+\mathrm{n}} \\
\therefore & x=\frac{3 \times 8+1 \times 4}{3+1}, y=\frac{3 \times 5+1 \times(-3)}{3+1} \\
\therefore & \quad=\frac{\square+4}{4} \quad=\frac{\square-3}{4} \\
\therefore & x=\square \quad \therefore y=\square
\end{array}
$$

(B) Solve the following sub-questions (any two):
i. In $\triangle A B C$, seg $X Y \|$ side $A C$. If $2 A X=3 B X$ and $X Y=9$, then find the value of $A C$.
ii. Prove that, "Opposite angles of cyclic quadrilateral are supplementary".
iii. $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$. In $\triangle \mathrm{ABC}, \mathrm{AB}=5.4 \mathrm{~cm}, \mathrm{BC}=4.2 \mathrm{~cm}, \mathrm{AC}=6.0 \mathrm{~cm}, \mathrm{AB}: \mathrm{PQ}=3: 2$, then construct $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$
iv. Show that: $\frac{\tan \mathrm{A}}{\left(1+\tan ^{2} \mathrm{~A}\right)^{2}}+\frac{\cot \mathrm{A}}{\left(1+\cot ^{2} \mathrm{~A}\right)^{2}}=\sin \mathrm{A} \times \cos \mathrm{A}$.
Q.4. Solve the following sub-questions (any two):
i. $\quad \mathrm{ABCD}$ is a parallelogram. Point P is the midpoint of side CD. Seg BP intersects diagonal AC at point X , then prove that: $3 \mathrm{AX}=2 \mathrm{AC}$
ii.

In the above figure, seg AB and seg AD are tangent segments drawn to a circle with centre C from exterior point A, then prove that: $\angle \mathrm{A}=\frac{1}{2}[\mathrm{~m}(\operatorname{arc} B Y D)-\mathrm{m}(\operatorname{arc} B X D)]$
iii. Find the co-ordinates of centroid of a triangle if points $D(-7,6), \mathrm{E}(8,5)$ and $\mathrm{F}(2,-2)$ are the mid-points of the sides of that triangle.
Q.5. Solve the following sub-questions (any one):

i. If a and b are natural numbers and $a>b$. If $\left(a^{2}+b^{2}\right),\left(a^{2}-b^{2}\right)$ and $2 a b$ are the sides of the triangle, then prove that the triangle is right angled.
Find out two Pythagorean triplets by taking suitable values of a and b.
ii. Construct two concentric circles with centre O with radii 3 cm and 5 cm . Construct tangent to a smaller circle from any point A on the larger circle. Measure and write the length of tangent segment. Calculate the length of tangent segment using Pythagoras theorem.

