BOARD QUESTION PAPER: FEBRUARY 2020

MATHEMATICS AND STATISTICS

Tim	e: 3 H	lours				Max. Marl	ks: 80
	Secti Secti Secti Secti Use of Figure Use of For e	structions: on paper is divided into FOUR sections. ion A: Q. 1 contains Eight multiple choice to Q. 2 contains Four sub-questions ead ion B: Q. 3 to Q. 14 each carries Two mark ion C: Q. 15 to Q. 26 carries Three marks. (ion D: Q. 27 to Q. 34 each carries Four may folg table is allowed. Use of calculator is tres to the right indicate full marks. (of graph paper is not necessary. Only rough each MCQ, correct answer must be written a)	ich carrying (Attempt of Attempt and Attempt and Attempt and Indonesia) and the Attempt allowed allong with allong with	ng One mark each. any Eight) ny Eight) npt any Five) nd. graph is expected. n its alphabet:	o mark	ks.	
		SEC	CTION-	A			
Q.1. 9	Select i.	and write the most appropriate answer to In $\triangle ABC$, if $a = 2$, $b = 3$ and $\sin A = \frac{2}{3}$, the second s	_		or eac	ch question:	[16]
	1.	(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$	(C)	_	(D)	$\frac{\pi}{6}$	(2)
	ii.	If $\vec{a} = 3\hat{i} - \hat{j} + 4\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = -5\hat{i}$ (A) 100 (B) 110	(C)	then $\bar{a} \cdot (\bar{b} \times \bar{c})$ is	(D)	108	
	iii.	The cartesian equation of the line passing B(2, -1, 3) is (A) $\frac{x+4}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ (C) $\frac{x-4}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$	(B)	the points A(4, 2, 1) $\frac{x-4}{-2} = \frac{y-2}{-3} = \frac{2}{3}$ $\frac{x-4}{-2} = \frac{y-2}{3} = \frac{2}{3}$	$\frac{2-1}{-2}$		(2)
	iv.	If the line $\vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ is puthen value of m is (A)2	parallel to		$-m\hat{k}$)= (D)	10 , 0	(2)
	v.	If $f(x) = 1 - x$, for $0 < x \le 1 = k$, for $x = 0$ if (A) 0 (B) -1	is continuo (C)	ous at $x = 0$, then $k = 2$	$=\frac{(D)}{(D)}$	 	(2)
	vi.	The function $f(x) = x^x$ is minimum at $x = $		$\frac{1}{e}$	(D)		(2)
	vii.	If $\int_{0}^{k} 4x^{3} dx = 16$, then the value of k is(A) 1 (B) 2	· (C)	3	(D)	4	(2)

viii. Order and degree of differential equation	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = \boxed{1}$	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$	respectively are	_
---	--	--	------------------	---

(A) Order: 1, Degree: 4

(B) Order: 4, Degree: 1

(C) Order: 6, Degree: 1

(D) Order: 1, Degree: 6

Q.2. Answer the following questions:

[4]

- i. Write the dual of $p \land \sim p \equiv F$ ii. Find the general solution of $\tan 2x = 0$
 - d the general solution of $\tan 2x = 0$ (1)
- iii. Differentiate $\sin(x^2 + x)$ w.r.t. x

(1)

(2)

(1)

(1)

iv. If $X \sim B(n, p)$ and n = 10, E(X) = 5, then find the value of p.

SECTION-B

Attempt any EIGHT of the following questions:

[16] (2)

- **Q.3.** Using truth table verify that $\sim (p \lor q) \equiv \sim p \land \sim q$
- **Q.4.** Find the matrix of co-factors for the matrix $\begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$ (2)
- **Q.5.** Find the angle between the lines represented by $3x^2 + 4xy 3y^2 = 0$ (2)
- **Q.6.** \bar{a} and \bar{b} are non-collinear vectors. If $\bar{c} = (x 2) \bar{a} + \bar{b}$ and $\bar{d} = (2x + 1) \bar{a} \bar{b}$ are collinear, then find the value of x.
- Q.7. If a line makes angles 90°, 135°, 45° with X, Y and Z axes respectively, then find its direction cosines. (2)
- **Q.8.** Express the following circuit in symbolic form:

- **Q.9.** Differentiate $\log (\sec x + \tan x)$ w.r.t. x. (2)
- **Q.10.** Evaluate: $\int \frac{dx}{x^2 + 4x + 8}$ (2)
- **Q.11.** Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \tag{2}$
- **Q.12.** Solve the differential equation $\frac{dy}{dx} = x^2y + y$ (2)
- Q.13. Find expected value of the random variable X whose probability mass function is: (2)

X = x	1	2	3
P(X = x)	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{2}{5}$

Q.14. If
$$y = x \log x$$
, then find $\frac{d^2 y}{dx^2}$. (2)

SECTION-C

Attempt any EIGHT of the following questions:

[24]

(3)

Q.15. State the converse, inverse and contrapositive of the conditional statement:

'If a sequence is bounded, then it is convergent'.

Q.16. Show that:
$$\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{77}{85}\right)$$
. (3)

- **Q.17.** Show that the points A(2, 1, -1), B(0, -1, 0), C(4, 0, 4) and D(2, 0, 1) are coplanar. (3)
- **Q.18.** If \triangle ABC is right angled at B, where A(5, 6, 4), B(4, 4, 1) and C(8, 2, x), then find the value of x. (3)
- Q.19. Find the equation of the line passing through the point (3, 1, 2) and perpendicular to the lines

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3} \text{ and } \frac{x}{-3} = \frac{y}{2} = \frac{z}{5}.$$
 (3)

- **Q.20.** Find the distance of the point $\hat{i} + 2\hat{j} \hat{k}$ from the plane $\bar{r} \cdot (\hat{i} 2\hat{j} + 4\hat{k}) = 10$ (3)
- **Q.21.** If $e^x + e^y = e^{x+y}$, show that $\frac{dy}{dx} = -e^{y-x}$ (3)
- Q.22. The surface area of a spherical balloon is increasing at the rate of 2 cm²/sec. At what rate the volume of the balloon is increasing when the radius of the balloon is 6 cm? (3)
- **Q.23.** Find the approximate value of $e^{1.005}$; given e = 2.7183. (3)
- **Q.24.** Evaluate: $\int \frac{x^2 \cdot \tan^{-1}(x^3)}{1+x^6} dx$ (3)
- **Q.25.** Solve the differential equation $\frac{dy}{dx} + y = e^{-x}$ (3)
- **Q.26.** If f(x) = kx, 0 < x < 2= 0, otherwise,

is a probability density function of a random variable X, then find:

i. Value of k.

ii. P(1 < X < 2) (3)

SECTION-D

Attempt any FIVE of the following questions:

[20]

- **Q.27.** Prove that a homogeneous equation of degree two in x and y i.e. $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines passing through the origin, if $h^2 ab \ge 0$. (4)
- Q.28. Solve the following linear programming problem:

Maximise: z = 150x + 250y

Subject to; $4x + y \le 40$

$$3x + 2y \le 60$$

$$\begin{array}{l}
 x \ge 0 \\
 y \ge 0
 \end{array} \tag{4}$$

Q.29. Solve the following equations by the method of reduction:

$$x + 3y + 3z = 12$$

$$x + 4y + 4z = 15$$

$$x + 3y + 4z = 13 \tag{4}$$

Q.30. In
$$\triangle ABC$$
, if $a + b + c = 2s$, then prove that $\sin\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{bc}}$, with usual notations. (4)

Q.31. Function f(x) is continuous on its domain [-2, 2], where

$$f(x) = \frac{\sin ax}{x} + 2, \text{ for } -2 \le x < 0$$

= $3x + 5$, for $0 \le x \le 1$
= $\sqrt{x^2 + 8} - b$, for $1 < x \le 2$

Find the value of
$$a + b + 2$$
. (4)

Q.32. Prove that:
$$\int \sqrt{x^2 + a^2} \cdot dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + c$$
 (4)

- **Q.33.** A fair coin is tossed 8 times. Find the probability that:
 - i. is shows no head
 - ii. it shows head at least once. (4)
- **Q.34.** Prove that:

$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$
 (4)